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We reconsider the problem of the Hamiltonian interpolation of symplectic 
mappings. Following Moser's scheme, we prove that for any mapping t/,, 
analytic and e-close to the identity, there exists an analytic autonomous 
Hamiltonian system, H e such that its time-one mapping ~ , ,  differs from t/, by 
a quantity exponentially small in 1/e. This result is applied, in particular, to the 
problem of numerical integration of Hamiltonian systems by symplectic algo- 
rithms; it turns out that, when using an analytic symplectic algorithm of order 
s to integrate a Hamiltonian system K, one actually follows "exactly," namely 
within the computer roundoff error, the trajectories of the interpolating 
Hamiltonian He, or equivalently of the rescaled Hamiltonian K, = e-JH,, which 
differs from K, but turns out to be e s close to it. Special attention is devoted to 
numerical integration for scattering problems. 

KEY WORDS: Hamiltonian systems; symplectic mappings; symplectic 
integration algorithms; perturbation theory. 

1. I N T R O D U C T I O N  

Let  us c o n s i d e r  a s m o o t h  symplec t i c  m a p p i n g  ~ :  @--+_~, w h e r e  ~ is a 

d o m a i n  in IR 2" (o r  a symplec t i c  m a n i f o l d  of  d i m e n s i o n  2n),  e n d o w e d  wi th  

c a n o n i c a l  c o o r d i n a t e s  (p, q ) =  (p~ ..... p", q~ ..... q"). A class ical  p r o b l e m  is 

the  s e a r c h  for  a n  ( a u t o n o m o u s )  i n t e r p o l a t i n g  H a m i l t o n i a n ,  n a m e l y  a 

H a m i l t o n i a n  H such  t h a t  its f low ~ '  a t  t ime  t = 1, o r  t i m e - o n e  m a p p i n g ,  H 
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coincides with ~. Let us notice that, if H exists, then the mapping 
admits an integral of motion, namely H itself, and this is not trivial. 

A special case is that of mappings which are near the identity, more 
precisely mappings ~ ,  smoothly depending on a (small) parameter e, such 
that ~o(P, q ) =  (P, q). For such mappings a formal solution was provided 
by Moser, ~ who proved that 3 one can construct a formal, i.e., possibly 
nonconverging, series H~=ah~ +~2h2+ .. . ,  such that its (formal) time- 
one flow agrees, order by order, with ~ .  Moser's construction follows a 
"direct" method: namely, without any change of variables, one directly 
constructs each term of the Hamiltonian (more precisely, of its vector 
field J. Formal results related to Moser's can be found in ref. 2 and 3. 

Later, Neishtadt 14~ provided for this problem an exponential estimate, 
namely (in the analytic case) he proved that there exists a Hamiltonian H~., 
small with r such that, denoting by ~ , n =  ~ its time-one flow, one has 

I I ~ , ~ -  ~11 <~C~e -:/~ (1.1) 

with C, e* > 0. Neishtadt's construction is instead "indirect": indeed, there 
one preliminarily introduces a nonautonomous Hamiltonian /1alP, q, t), 
which interpolates r exactly (such Hamiltonian is known to exist; see, 
for example, ref. 5) and then, by a suitable canonical transformation, one 
eliminates from /-1~ the variable t, which for small e turns out to be a 
"fast variable"; practically, the exponential estimate (1.1) comes out as a 
byproduct of a more general estimate on adiabatic invariants. 

The purpose of the present paper is twofold. On one hand, we recon- 
sider the interpolation problem, and show that Moser's scheme leads in a 
very simple and direct way to the exponential estimate (1.1); in particular 
(at variance with the indirect method) one easily gets in this way quite 
reasonable (although not optimal) expressions for the constants entering 
the estimate. On the other hand, we aim to stress some consequences of the 
exponential estimate (1.1), in particular in connection with the use of 
symplectic mappings for the numerical integration of Hamiltonian systems. 

Let us quickly examine some elementary consequences of the estimate 
(1.1); more precise statements will be found in Section 2. 

(i) The mapping ~u admits an almost-integral of motion, up to an 
exponentially large number of iterations. Precisely, with a suitable constant 
C' > 0 one deduces 

IH,( ~ ( p ,  q)) - H,(p, q)l ~< kC%e-:/~" (1.2) 

3 Properly speaking, in ref. 1 one does not refer to a small parameter ~.; equivalently, series 
expansions in (p, q) are introduced. 
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so that, in particular,  for any s >/1 one obtains estimates of the form 

[H~(~(p ,q ) ) - -H~(p ,q ) l<~C'd  for k < ~ ' - Z e  +~'/~" (1.3) 

(ii) The distance 

dk = II '/'~ k 

between the kth iterate of ~ ,  and the flow of CH~ at time k grows slowly with 
k, even if the mapping admits exponential divergence of nearby trajectories." 
precisely, with suitable constant  p >0  [in fact, the Lipshitz constant  of 
O~(p, q) = 8 - 1 ( ~ ( p ,  q ) -  (p, q))], one gets 

k,~. _ 1 - ~"/': (1.4) d k < C  e e 
P 

so that  for k = (r J ), corresponding to I gt~(p, q) _ (p, q)l = (D(1), one gets 
dk=(9(e-~'/"), and only for much larger k=(9(~  -2) does divergence 
possibly occur. 

Let us stress here the relevance of these properties for the problem of 
the integration of Hamil tonian  systems by means of symplectic algori thms 
(a comment  on the general case is deferred to the end of the conclusions). 
This problem has at tracted at tention in the recent literature (see, for 
example, refs. 6-8); in fact, it is a common  experience among  people 
working numerically in dynamical  systems or in molecular  dynamics that 
even very simple symplectic algorithms, like the so-called leap-frog 
algorithm (also called central differences method;  Verlet algorithm, in the 
literature on molecular  dynamics),  often behave better than other more 
sophisticated or higher-order nonsymplectic schemes (see, for example, ref. 9 
for a comparison) .  

Suppose one is given a Hamii tonian  system K. Integrating numerically 
its equations of mot ion means precisely replacing its time-e mapping  r by 
a mapping  ~u close in some sense to qs~..: for example, such that 

(1.5) 

(s is called the order of the algorithm). Now, assume the algorithm gt. is 
symplectic; let H~ be its interpolating Hamil tonian,  and denote K~. = s ~H,:. 
For  any t one 5as clearly r  - r  K~ is thus a time-e interpolating HK - -  K~ ' �9 

Hamiltonian,  and the estimate (1.1) can be rewritten in the form 

[[r _ gt.[[ ~< Cee ':'/': (1.6) 
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By comparison of (1.5) and (1.6), one then deduces that K~ is close to the 
original Hamiltonian K. In fact, with suitable C " >  0, one finds 

I lg~-  KII ~ C"e ~ (1.7) 

(see Section 4 for details). On the other hand, as remarked above, the 
algorithm ~u follows the orbits of the interpolating Hamiltonian K~. up 
to k =  d~(e -~) with exponentially small error: in particular, with very 
reasonable values of e, the error at t = 1 can be easily made (much) smaller 
than the computer roundoff error. It is then clear, in our opinion, what 
one really does when integrating numerically the equations of motion of 
a Hamiltonian system by means of a symplectic algorithm: indeed, one 
simply replaces the "true" Hamiltonian K by a different autonomous 
Hamiltonian K~., e~-close to it, and then computes "exactly" (namely, 
within the roundoff error) the time-one mapping of K~. 

This is a fact. Whether it implies something for the accuracy of the 
numerical integration is a delicate point. In our opinion, the question 
crucially depends on the structural stability of the problem at hand: 
namely, if a small change of the Hamiltonian is expected to influence 
deeply the results, then replacing K by KE makes indeed a big difference: in 
this case, however, we sincerely doubt that a numerical computation with 
any integration method can be of any interest. On the contrary, if small 
changes in the Hamiltonian are expected to be not really relevant, at least 
for the quantities one is looking at, then according to the above analysis, 
the numerical computation should be considered as essentially reliable. 
Some further comments on this point, including an example, are deferred 
to the final section. 

In particular, one easily explains in this way why symplectic 
algorithms give rise to a good energy conservation, with essentially no 
accumulation of errors in time: indeed, according to (1.3) and (1.7), one 
gets [using the short notation K ( t ) =  K(p(t) ,  q(t)), and so on]  

IK(t) - K(0)I ~< IK(t) - g~(t)l + Ig~(t) - K~(0)I + IK,:(0) - K(0)I ~< C'"e ~ (1.8) 

with suitable C " > 0 ,  almost uniformly in t, namely up to times 
exponentially long in e -  

In fact, we became interested in trying to understand this problem for 
the purpose of understanding in a rigorous framework the apparently "too 
accurate" numerical results reported in ref. 10. That paper studied numeri- 
cally the scattering of a plane rotator from a fixed obstacle, in order to 
measure the energy exchange between the translational and the rotational 
degrees of freedom produced by the collision; the accuracy of the results 
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found there, in particular for the overall energy conservation, is apparently 
"'too high" (as a matter of fact, the relative error in energy conservation, 
at the end of each scattering process, is almost  as small as the computer 
roundof f  error), and apparently not compatible with the precision of the 
algorithm used in the numerical computation: thus, an explanation is 
needed. As already remarked in ref. 10, the existence of a Hamiltonian 
which almost exactly interpolates the integration algorithm does provide 
the required explanation. This particular problem will be studied in detail 
in Section4, by suitably adapting the general results to the case of 
scattering. 

The paper is organized as follows: Section 2 is devoted to general 
results, which are then proved in Section 3; Section 4 is devoted to 
numerical integration algorithms, with special attention to the scattering 
case; a short conclusion follows in Section 5. 

2. RESULTS 

As in ref. 1, we find it more convenient to study the general case of a 
mapping ~u : R" ---, W", and treat the symplectic case as a particular one. 
We shall consider mappings ~u which are near the identity, and can be 
written as power series in e, namely 

~U~(x) = x + ~ r  + ~ " r  + . . .  (2.1) 

Each ~k, k >~ I, will be assumed to be real analytic in a suitable complex 
neighborhood @p of a real set ~ c  E ' ,  defined as follows: given an 
"extension vector" p = (p~ ..... p")  with positive entries, one denotes 

, E ~  (2 .2 )  

zJp= {y~Cm; ] y ~ - x q  ~ p i ,  1 ~ i < . m }  

Let us now introduce convenient norms. For a function w real analytic 
in ~p., with p ' ~ p  (the inequality is intended to work separately in all 
components), one denotes 

Ilwll,.-- sup Iw(x)l (2.3) 
.~: 6 c_/~)r 

while for any vector-valued function W = ( W ~ ..... W " ) ,  with W~,..., W"'  real 
analytic in ~p,, we denote 

II Will p ' 
max pi (2.4) It WJlp.--,_<,_<., 
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Given any vector field f=( . f~  ...... f '") ,  we denote by Lf  the differential 
opera tor  acting on scalar functions according to the usual rule 

~. , aw 
L,w= ,=, f ~ (2.5) 

For  vector-valued functions, it will be convenient to denote (at variance 
with a more common  use of the same notat ion)  

Lj-W = (Lr w'  ..... Lr Win) (2.6) 

The flow associated with the differential equat ion k = f ( x )  will be denoted 
by r if f is Hamil tonian,  with Hamil tonian  h, the equivalent notat ion qs' h 
is used. For  the t ime-one map, we shall simply denote q~r or q~h- Denoting 
by ~ = ( ~  ..... ~'") the identity function in ~", namely 

~(x)=x, ~i(x)=xi 

one has clearly qsj.= eZ-r~. Finally, in the proposi t ion below we shall also 
deal with a formal series of vector fields 

F,~=e.f,+e2f2+ ... , f , :  ~ , , ~ C "  

It is worthwhile to notice that its exponential  exp LF[- is formally well 
defined, since at each finite order in e one gets only a finite number  of 
contributions. 

We can now state our basic proposition. 

Proposition 1. Consider the mapping  

T,:(x)=x+ L ek~k(X)' ~>~0 (2.7) 
k = l  

Assume the functions ffk, k 1> l, are real analytic in ~p, and satisfy there 
the estimates 

II r II,, ~<7 ~- ' F  (2.8) 

for some positive constants  7, F. 
Then there exists a formal series of vector fields 

F~ ~ = ~f, + e'-f, + -.. (2.9) 

analytic in ~f,, such that 

(i) One has formally 

(exp L~7.) ~ = ~ .  (2.10) 
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with 

(ii) The vector fields.f~, k >/1,  satisfy the estimates 

IIf~ll,, ~< F 

Ilf, l l , , / ,_<�89 k>~2 

fl -- 4 max(l,, F)  

moreover, as long as 1 -N< r~< (2f ie)-~,  the finite sum 

F; = gf , + . . .  + eT, 

satisfies the estimates 

(2.11) 

(2.12) 

(2.13) 

II F:)I ,/: ~ ~ r  (2.14a) 

I [ ~  - ~11 p/4 < 3eF(2rfle)" (2.14b) 

(iii) If ~ is symplectic, then all vector fields f l , f 2  ..... are locally 
Hamiltonian. 

Remark.  In the symplectic case, the global existence of a Hamilton 
function H~, corresponding to the vector field F~, requires additional 
assumptions (unless the domain is simply connected). For instance, a 
(globally defined) symplectic mapping, such that its interpolating vector 
field is only locally Hamiltonian, is ~ :  (L ~p) ~---~ ( I +  e, ~), for I ~ ,  ~ S ~ :  
indeed, one has F~(I, q~) = (e, 0), constant and independent of r, and corre- 
spondingly H(I, q~)=-~q~, which, however, is not globally defined on 
R • S ~. On the other hand, as we shall see, it is quite crucial in the applica- 
tions to know whether or not the interpolation is global. This is a delicate 
question whose general discussion goes beyond the purpose of this paper. 
However, we remark that the global existence of the interpolating 
Hamiltonian is guaranteed at least for a relevant class of symplectic map- 
pings, including the more common integration schemes. Indeed, one can 
prove that, i f  a mapping ~P~. admits a mixed-variables generating fimction o f  
the form S~(p', q) = p ' .  q + S,:(p', q), where S~. is globally defined, then all o f  
our vector.fields.f~, turn out to be globally Hamiltonian. An indirect proof of 
such a claim makes use of two previous results. On one hand, it is well 
known that the mapping ~,: can be represented by the time-E flow of a 
time-dependent Hamiltonian /t,:; explicit formulas relating ~,: to /4,: are 
produced in ref. 2. On the other hand, according to ref. 3, the flow of/~,: 
can be formally approximated at any order in e by the flow of a time- 
independent Hamiltonian H,:; explicit formulas relating/4,: to H~. are given 
in ref. 3. In the following, we shall refer to this case as the global symplectic 
case. 
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Deferring to the next section the proof of Proposition 1, we state and 
prove here two simple corollaries, corresponding to the results announced 
in the Introduction. 

Corollary 1. Under the above assumptions, there exists an 
autonomous interpolating vector field F~ such that 

1 

II,/~r< - ~<llpl4<~3eFe -[:1~] e* =  (2.15) 
�9 ' 2eft 

for any e~<e*, where [ . ]  denotes the integer part; in the (global) 
symplectic case, F< is (globally) Hamiltonian. 

ProoL One simply makes use of (2.14b), taking r to be a function of 
e, in such a way to get the best result, i.e., the minimum of (2rile)'. The best 
value of r turns out to be r = [e*/e]. QED 

The next corollary concerns the relation between the iterates ~u* of ~u 
and the flow r  of the above best interpolating vector field F~. We here 
need that ~Uk(X) is well defined; to this purpose, we restrict ourselves to the 
set ~ t * ~ c ~ ,  such that ~U{(x )~  for O<<.j<<.k-1, and denote 

I [r ~(x)] ' l  
dj= sup max p~ (2.16) 

.x'Ec-/'(k) 1 <~i<~m 

(the mapping ~ .  will also turn out to be well defined in ~(k~, for 
0 <<.j<~k). The latter statement in the corollary concerns the accuracy of 
energy conservation by ~v~ in the symplectic case. Let, with notation 
adapted to this case, p--(a~,..., a , ,  z I ..... r,); with no possibility of con- 
fusion, we also denote by p the positive number defined by 

p2= max f f iT .  i (2.17) 
I <~i<~n 

C o r o l l a r y  2. Let/~ denote the supremum for s ~< s* of the Lipshitz 
constant of the (order-one) mapping e - ~ ( ~ - ~ ) .  If k<~(#e) -1, then one 
has 

dk<~ 3F( I  +#e)  k -  1 F e e -  u.'/~.] < 6 - - t~'/,] (2.18) 

Moreover, in the global symplectic case, denoting by He the Hamiltonian 
corresponding to the best interpolating vector field F., for x e @ok) one has 

IH~(~Uk(X))- H~.(x)l ~< 3nkpZFee -t':'/':] (2.19) 



Hamiltonian Interpolation of Symplectic Mappings 1125 

Remark. This corollary is meaningful as long as there are initial data 
which do not escape 9 for a large number of iterations, i.e., as long as 9 ~kl, 
for large k, is not empty. In the global symplectic case, this is typically 
guaranteed by the conservation of energy: indeed, if a surface of constant 
energy is contained in 9 ,  and is not too close to the border, then (2.19) 
guarantees a priori that for x on that surface ~ ( x )  cannot escape 9 ,  up 
to very large k. This is the usual case of symplectic mappings which are 
introduced to numerically integrate Hamiltonian systems. 

Proof. Assume provisionally that r  does not escape 9p/4 for 
O<~j<~k-1 and x e 9  ck~. From the trivial inequality 

I ~ f l x )  - r  ~< I ~ , (  ~ -  ' (x ) )  - ~e~(r l (x) )  I 

+I~U,(qS~-'(X))--r162 (2.20) 

and using the definition of/1 and the previous corollary, one immediately 
finds the recurrent estimate 

dj<~(l+lae)di_~+3Fee-['~ for O<j<~k (2.21) 

(with do=0),  which in turn gives 

dj<~3F(l+Pe) j - 1  - [~./~] ee , O<~ j<~k (2.22) 
pe 

as claimed in (2.18). The above provisional assumption is easily 
removed: indeed, by recurrence, one immediately recognizes that if 
q)~, ...... r then, just because of (2.22), q~J(x) also belongs 
to 9p/4. 

Finally, to prove (2.19), let us write 

k - - I  

InAT'~(x))-n~(x)l  <~ ~ In~.(~uJ,+l(x))-n~.(~{(x))l 
j = 0  

k - I  

= ~ IH~.(~(~{(x)))-  H~(r 
j = 0 

~< k~.~. II ~g~. - qbn~[I p/4 (2.23) 

where 2~ denotes the Lipshitz constant of H~.; recalling the definition of 
norms, as well as (2.14a), one easily gets 2~<<.2np~-IIF~.llp/4<<.3np2eF. 
Using inequality (2.15) to estimate I I ~ - r  llp/4, (2.19) immediately 
follows. QED 

822/74/5-6-12 
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3. PROOF OF PROPOSIT ION 1 

3.1. The Recursive Scheme 

Let us use the short notation Lk=Lf~. By formally expanding the 
exponential of L r ; ,  one gets 

e X p L F . 7 = , +  ~ 1 ( y i 1 ~ ekLk = ~ +  y. e / --  (3.1) 
j ~ > i  J "  I 

k >~ l I>~ j= l J ! Aj'l 

with 
Aj.t = ~ Lkj" "" Lkt, 1 -%<j-%< l (3.2) 

kt,...,kj>~ I 
kl + ... + k j = t  

From this definition, one easily gets for Aj.~, l>/1, the recursive relations 

Al.l= Lt (3.3a) 

I - - j + l  

Aj.I = ~. LkAj_ l j_k ,  2<.%j<~1 (3.3b) 
k = l  

By comparing expression (3.1) for exp LF~ with the series (2.7) of ~, ,  it 
is not difficult to get the further recursive relations 

fJ = ~/1 (3.4a) 

1 
f , = O , -  ~ ~ Aj.,r l ) 2  (3.4b) 

j = 2  

Indeed, the former equality is trivial, while for any 1>/2 one has 

1 
0,= A,.d + Z Aj.,r I3.5) 

j = 2  

and (3.4b) is immediate, since A l.lr = LI~ =f l .  
The recursive scheme defined by (3.3), (3.4) provides a way of 

calculating the vector fields fk, 1 ~< k < 0% in such a way that exp L~? 
coincides with ~,  at any order in e. To better understand the recursion, 
one may rear to the triangular diagram 

L A A A 
A2~ A2,3 A2,4 

A3,3 A 3 , 4  

A4,4 

~  

~  

. ~  

(3.6) 
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where the A J.k do not appear,  but in fact, in virtue of (3.3a), are implicitly 
contained in the first row. The recursion proceeds as follows: assume one 
has already defined the first 1 -  1 columns of the array; then, using (3.3), 
one defines all the elements of the next column l but the first one, while 
later, using (3.4), one also defines f~ and A,.~. One should notice that all 
functions appear ing in (3.6) are well defined in a finite number  of 
operations, without any inversion or convergence problem, so all of them 
are analytic in ~ , ,  regardless of the value of e. 

3.2. The  Est imate  (2 .11)  of f ,  

Let 

~ = P  .r max(~, F) 
2k '  

(3.7) 

We prove recursively that the following estimates hold: 

(a,) IIf, l l ,<r 
~1- , ~ 2 <~ l <~ k 

(a/) ] l f~l l t ' - "+"-  ' ~  < 1--~q F (q>~O,l+q-l<~k 

(b,. ,)  IlA,., ~lto < F (3.8) 

~t ,F {2q<<.l<~k,l~j<~l>>.O,t+q_l<~k (b~.t) I IA/ . /~ I I . - .+ ,  'l's < 1 -I- q 

In particular,  for t=k and ~/= 1, one gets the required estimate on 
fk,  k >/2. Also notice that  the estimates (a~) and (b L l) are exceptional, and, 
unfortunately, worse, because they do not contain the free parameter  q. 

The estimates (a~) and (b L t ) follow immediately from A ~. ~ ~ = f~ = ~ ~. 
We then assume that the above inequalities are satisfied up to a given value 
of /, for l~<j~</, and show (in the order, according to the recursive 
scheme) that  (by.~+ t) for 2<<.j<~l+ 1, then (a~+~), and finally (bL~+,), are 
also satisfied. 

In the estimates, we shall frequently use the following elementary 
result. 

Lemma 1. Let ~ be as in (3.7), and consider any positive constants 
O, 0', with 0 + 0 ' <  2k. If the vector field f i s  analytic in @,_ io+0')6, and the 
scalar- or vector-valued function w is analytic in ~p_ o,~, one has 

2k 
IILrwll,- it,+ *,'1,~ ~< ~ I l f l l , - to  + o'~.s Ilwll,- o,~ (3.9) 
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Proof. Let w be a scalar function and, for any xe~,_lo+o.~,  ~, denote 

w,.(z) = w(x + z f (x) )  (3.10) 

One has clearly 

Now, as long as Izl ~ (, 

dw ,. 
(Lcw)(x) = ~ (o) 

0%5 i 
~= min (3.11) 

l <.i~,,, If i(x)l  

one has x + zf(x)E_~p_ 0,~; a Cauchy estimate gives then 

~ ( 0 )  1 ~< 2k 
~<7"~. sup Iw.,.(z)l--~-Ilfll,,-Io+o',~ Ilwllp-,,* (3.12) 

,2 I=1 ~< 

and (3.9) is immediate. The case of a vector-valued function is treated in 
a similar way. QED 

Let us then prove (bi.t+ i), 2<~j<~l+ 1. Forget for a moment the case 
j = 2 ,  which needs special considerations. From very definition of Aj.~+ ~, 
using Lemma 1, one gets 

I - j + 2  

IIh/.l+,~ll,-,+n~a<~llLiA/-,.lr ~ IIZ.,A./-,.t+l-.,.r 
s = 2  

~< 2k IIf~llo IIAz-,.,r ,.~ 

2k l-j+2 
+ - -  Z IIZIl,,-.+,.,~ Ilaj_,.,+,_.,.~ll,,_.+,,_.,.~ 

S s = 2  

(3.13) 

(the sum is intended to vanish if./'= / + 1 ). By the inductive hypothesis, one 
finds 

~ , - , [  , j+2 1 I (3.14) IIAj.l+lr 2 -  1+ Z s ( l + r l + k - s )  
1 + r /  ,,'=2 

and the conclusion is immediate: indeed, one easily recognizes that each of 
the l -  j terms of the sum does not exceed l-  ~, so that 

IIA/a+ t ~11,,-. +,,.~ < 4kF 2 ~ t -  J (3.15) 
1+11 

Inequality (bj.r ~), 2<j~<l ,  is then guaranteed by the choice (3.7) of ~.  
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Let us now consider the case j =  2; this is a special case, because the 
last term of the sum, namely L~A~.t ~, contains At.t ,  whose estimate is 
known only in -@~,. In fact, for l +  1 = 2 this is the only term, and one finds 

2k 2k 
- - C  2 (3.16) 11A2.2 ~11,_ {, +,}~ ~<l-~q lift II, IIA ~,t r ~< 1 + 11 

For the choice of ~ ,  the required estimate is immediate. For  l + 1 > 2, one 
finds instead 

2k 
IlLtAl.t~ll,,_u+n~ <<. ~-+-~q IITAI,-,+,~,~ IIA t.t~ll,, 

2k .~l- t 
~</-~q r 2 +-----q 

1 ~ t - t  
< T Zkr~ y + ~ (3.17) 

Thus, in this case, too, one gets (3.15), and (b2./+t) is proven. 
Let us now come to (a~+ ~ ). Using the recursive definition (3.4) off t+  t, 

as well as the assumption (2.8) on fit and the previously obtained 
inequalities (bi.~ + t), we can write 

IIJ)+tll,, ,+, , , ,~YtF+7--T-=, .. = z ~ < T ~ ,  .. ( l + q )  + e - 2  (3.18) 

Since 1 + t 1 ~< k, using (3.7) [in fact, M > k y / ( 3 -  e) would be enough] ,  one 
immediately gets (1 + r/) yz/~t ~< k),/~ < 3 - e, and (at+ ~) is achieved. 

Finally, the last inequality, namely (b~.t+ t), is a direct consequence of 
(at+t),  since, according to (3.3b), one has A l . l + ~ = L t + t r  

3.3. The Estimates (2.14a), (2.14b) 

Inequality (2.14a) is trivial for r =  I. For  1 < r~< (2fl~)-~, according to 
(2.11 ), one can write 

r _<I [ (LV-'I  ItF:ll,,/_,<er+~ ~ ekk" ,/~k, ~r 1+  ~ (3.19) 
k=2 "~2 k=l \ 2 r )  J 

Since the sum does not exceed 2, (2.14a) is certainly satisfied. Concerning 
(2.14b), one proceeds as follows: let 

dr(x) = q ~ : ( x ) -  ~U~(x) (3.20) 
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From the formal part, we already know that z/r(x), as a function of ~, is 
analytic and divisible by er+ ~: by a well-known property of analytic 
functions, one then gets for any positive 

[ 'ek  r §  

IA;(x)l ~ ~,7) :E c.i:imax-<c IA ;(x)l (3.21) 

Now, a trivial generalization of the estimate (2.14a) for F~ gives 

IlF~llo/2 ~< 3 Iz l /"  (3.22) 

and the estimate holds for r~<(2/3 Iz l ) - ' ,  i.e., for Izl ~<~= (2/~r)-L If this 
condition is satisfied, then for x ~ @pin one has certainly ~C(x)~-@p/z, and 

II ~F;.-- ~11~/4 ~< 3~/- (3.23) 

On the other hand, for Izl ~< ~ one has in particular Izl < 1/(47), and thus, 
from (2.7), (2.8), 

Izl F 3 
II ~ = -  ~11~ ~< 1 - Izl ~ < 2  ~F  (3.24) 

For  Izl ~< ~ one has then 

I1~ ~11,,/4 ~< II,t,~ - ~1l~/2 + II ~u= _ ~llq14 <~ 3f fF  (3.25) 

and consequently 

11~;11~/4 ~< 3~F ~< 3~F(2r/3~) ~ (3.26) 

as claimed. 

3.4. The Symplectic Case 

Point (iii) of Proposit ion 1 practically reduces to the following purely 
algebraic result. 

L e m m a  2. If a vector field 

F~ = g f  t + - . .  + e' fr  

satisfies the relation 

{(exp L~-:) {;, (exp L~-~) {i} _ {{i, ~.i} = ~o(~ r+ 1) (3.27) 

where {- ,-} denotes the Poisson bracket, then the vector fields f~ ..... f ,  
are locally Hamiltonian [and consequently, the rhs of (3.27) actually 
vanishes]. 
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Proof. At first order in e, (3.27) gives 

{Lie/, ~J} "4" {r L1r )} =0 

that is, 
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(3.28) 

This section is devoted to the problem of numerical integration of 
Hamiltonian systems by means of symplectic algorithms. To  be definite, we 
consider the particular class of Hamiltonian systems 

K(p ,q )=�89  ~ (pi)2 + V(q' ..... q") (4.1) 
/=1 

4. ON SYMPLECTIC  INTEGRATION A L G O R I T H M S  

{f~,  ~J} + {~, f~  } = 0 (3.29) 

This is a well-known necessary and sufficient condition in order for f t  to 
be locally Hamiltonian. 

Proceeding by induction, assume that f l  ..... fk ,  k<r ,  are locally 
Hamiltonian. One has clearly 

expLr~=exp(eLl  + ... +~;kL,)+ek+lLk+l +~(e k+2) (3.30) 

and thus, from (3.27), 

{ (e~.L, +... + ~L, + e* + I L ,  + I ) r (eeL, +... + r + ek + ILk + 1 ) ~J } 

- {~', r = o ( ~  *§ (3.31) 

Now, according to the inductive hypothesis, one has 

{e~.L, + ... + aL,r e~.L, + ... + .~L,r = {~,, C j} 

It follows that 

{Lk+lr CJ}+ {r162 j}=O 

so that fk+l  is locally Hamiltonian. The iemma is thus proven. QED 

Point (iii) of Proposit ion 1 is now immediate: indeed, from the formal 
part one has 

(exp LF,) r - ~ = (9(e r+ t) 

so that, for symplectic ~u., (3.27) is guaranteed. This concludes the proof  
of Proposit ion 1. Q E D  
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and the most  elementary symplectic integration scheme, namely 

~ ( p ,  q)= (p + eu(q), q + ep + e2u(q) ) 

where 

(4.2) 

0V u = (u I ..... u"), u i= - - -  (4.3) 
Oq i 

The algori thm is immediately recognized to be globally symplectic. Then 
one has g% = e~b ~ + e'-@2, with 

01 = (u, rt), 0_, = (0, u) (4.4) 

is the projector  defined by n(p,  q) = p. Special at tention will be devoted 
to the case of scattering, namely the case in which one or more  of the qi 
run over the whole real line, and the potential vanishes if any of these goes 
to infinity; the Hamil tonian  system considered in the already quoted ref. I0, 
namely 

12 p2 
K(p,q,I,q))=~-~+~--~m+V(q,q) ), I ,p,  q s N ,  q) e S  l (4.5) 

belongs in particular (after a rescaling) to this class. Another  c o m m o n  
situation we shall consider is the case of mot ion in a bounded region; 
such a situation typically occurs when the constant-energy surfaces of 
Hamii tonian  (4.1) are compact .  

To  be definite, let us assume that the domain  ~ of the Hamii tonian  K 
(and of the mapping  gJ~) is given by IPq ~<P, i =  1 ..... n, and q e D c R " .  
Denoting by p = (fit ..... o'", r l ..... 3") the extension vector, we introduce the 
extended domains  

D , =  U { q ~ G " : 1 0 ~ - q ' l  ~<r ' , l~<i~<n} 
qED 

~,,= {(p, q)e e2": qeD~; IIm P~I ~<a ~} 

(4.6) 

For  notat ional  simplicity, we assume the extensions be independent of i, 
namely a t =  a, r i =  l". The quanti ty p2 introduced in Section 2 is then the 
product  at .  It is worthwhile to notice that, while r depend~ in general on 
V, a is instead arbitrary.  One could simply take cr = P, or profit from this 
arbitrariness to (slightly) optimize the results; in the following, to clarify 
our procedure,  we keep tr free. 

Denote  

~ ' * =  max sup lu~(q)l (4.7) 
I<~i<~n qeDt  
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Then one has 

I I 0 ~ l l p  = m a x  , - , 1 1 0 2 1 1 , , = - -  (4.8) 
T T 

and consequently the constants F, 7, and/~ entering Proposition 1 are given 
by 

F = max , - , ?, < F, /~ = 4F  (4.9) 
r = - ~  

One could also see that the Lipshitz constant p entering Corollary 2 
satisfies the simple estimate 

p<~F (4.10) 

in the real domain @o = N (the estimate requires some tedious work, but 
is not difficult). For convenience, in place of the best time-one interpolating 
Hamiltonian H~., we refer here to the time-e interpolating Hamiltonian 
K~=~-tH~,  for which one has q~' =q~'  

�9 �9 K ~  / 4 ~ "  

4.1. The Case of Mot ion  in a Bounded Region 

Let us first consider the easier case of motion in a bounded region; the 
(more interesting) case of scattering requires further considerations, and 
will be considered later. From Corollary 2, using the above estimate of p, 
one gets that, up to time ke <~ F ~ (notice that F-~ is a quite natural time 
unit in the problem at hand), one has 

[r -- < , X E ~  I~1 (4.11) 

i.e., the algorithm ~ follows the trajectories of the interpolating 
Hamiltonian K~ up to times of order one, with exponentially small error. 
Using quite reasonable values of the timestep ~, this error is easily made 
(much) smaller than roundoff errors, in any resonable precision; as 
remarked in the Introduction, this means that the essential effect of the 
discretization introduced by the algorithm is to replace the original 
Hamiltonian K by K~, and then to proceed "exactly," as for the case of 
iterated maps. 

The problem then arises of knowing the relation between K and K~. 
To this purpose, one has the following elementary corollary, which makes 
precise some cor~siderations already anticipated in the Introduction. 

Corollary 3. Let H~. be the best time-one interpolating Hamiltonian 
introduced in Corollary 2, and consider the time-e interpolating Hamilto- 



1134 Benettin and Giorgil l i  

nian K ~ = e - ' H ~ ;  let X and X~. denote the Hamiltonian vector fields of K 
and K~, respectively. If e ~< �89 with e* as in Corollary 1, then one has 

[]x~. - Xll./2 ~< 8~e'- (4.12) 

Moreover, if K~.(0, q) = K(0, ~) for some given q ~ D, then one has 

IIK,-KIIp/2-.~nB<rrF-~, B= 16 ~ +  (4.13) 

with 

d =  max sup Iqt-qi l  (4.14) 
I<~i<~nq~D 

Finally, the algorithm preserves both K and K~ up to an exponentially 
large time, namely one has 

Ig~(p,,  qk) - g , (po ,  qo)l ~< 4mrzF'-e 
(4.15) 

IK(pk, qk) -- K(po, qo)l ~< (3 + 2B) nazF'-e 

for 

k <~ eFe +t`'/~] (4.16) 

- J  r [e*/e]. Using Proof. One has X = ~ b l = f l ,  and X , = e  F , , r =  
(2.11 ), one then gets 

l l X , -  Xll,,/-, ~< ~ - '  IIF~ - ~f, II,:2 <~ �89 ~ k(el3k)k- 2 
k = 2  

~<�89 ~ 2*-'(e/~k)k-2~<2e/~F=8eF 2 (4.I7) 
k = 2  

as claimed in (4.12). Inequality (4.13) is also easily achieved: indeed, for 
any (p, q) s ~ one has clearly 

_ f{ i  "ql 
K,(p,  q) -- K(p, q) - ~o o~ (VK~. - VK). dl (4.18 ) 

where V denotes the gradient, and the line integral is independent of the 
path in @; on the other hand, from (4.12) one has 

3p i ~< 8aF-'z, ~< 8~F2~r (4.19) Oq i 
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and (4.13) immediately follows. Finally, the former of (4.15) is a trivial con- 
sequence of (2.19), after the choice (4.16) of k, while the latter immediately 
follows from 

IK(pk, qk)-  K(po, qo)l ~< IK(pk, q~.)- K~(pk, qk)l 

+ [g~(pk, q~)--g~.(po, qo)l 

+ [g~.(po, qo)-g(Po, qo)[ 

~< (3 +2B)  nazF2e QED (4.20) 

4.2. The Case of Scattering 

Let us now come to the problem of scattering. The uniform estimates 
(4.9) are of course correct, but definitely rough for the problem at hand, 
since one misses the essential property that, asymptotically, u vanishes, 
and, correspondingly, as is clear from (4.2), the algorithm ~ becomes 
exact. 

To take this crucial fact into consideration, we introduce the following 
more detailed, "local" estimate of u: 

q / (q)= max sup [ui(q')l, Og(q)~<og. (4.21) 
l<~i<~n I q ' -  ql < r  

For any function w: ~ ---, C, it is then convenient to introduce, besides the 
usual norm, the "local norm" 

Ilw; qllp, = sup Iw(p, q')l, q~ I~" (4.22) 
[ l m  p[ ~< er; [q' - ql < r 

and also define, by analogy, the local norm [IW;qllf,, for vector-valued 
functions W: ~ ~ C 2''. Let us notice that one has 

~k'(q) 
IlqJz; qll,,= (4.23) 

"t" 

Instead, because of the q-component, II~'t;qllp does not vanish for 
vanishing u. 

In the following Proposition 1' we adapt to the particular problem at 
hand the estimates of Proposition I; the essential difference is that norms 
are here replaced by local norms, while the constant F on the rhs of each 
estimate is replaced by the function 

~(q) = ~ ~< F (4.24) 
O" 
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P r o p o s i t i o n  1'. Let K and tF~ be as above, and let F ~ ' =  
e f ] + e 2 f 2 +  .-. be the formal interpolating vector field of ~u, as in 
Proposi t ion 1. With reference to the constants y, F, and fl and to the 
function ff defined above, one has 

IIf, 11 p <~ F (4.25) 
; _< t .k-  Iflk- Ilfk qllp/2~ ~_k t~(q), k>~2 

Moreover,  for any r~<(2/~s) -~ the finite sum F~=sf, + ... +e~f, satisfies 
the estimates 

IlF,~- sf, ; ql[,,/2 ~< �89 (4.26a) 

II 4 ' , : : -  '/%; qllp/�91 ~< 3s(2r~gy f~(q) (4.26b) 

Proof. The proof  of (4.25) is straightforward. Indeed, the recurrent 
assumptions (at) and (bz/) are replaced by 

II.f,;qlt,,_,,+,,_,,a<T-~qfg(q), tlA].,~.;qll, ,_(/+,,_,, , ,<~fr (4.27) 

and the proof  of the recurrence runs smoothly,  exactly as for Proposi t ion 1, 
with the only exception of the estimate of A2.2r162 which 
requires some care because, as remarked above, the local norm of ff~ does 
not vanish for vanishing u. Nevertheless, a direct computa t ion  shows that 
one has L~,,~,~ = (n Ou/Sq, u), and a Cauchy estimate for ~u/Oq easily leads 

k P + a  (q) ~(q) (4.28) IlA2'2;qll~'-II+")'~<~l+q r l + r /  

to 

as required. 
Let us come to the inequalities (4.26). The former immediately follows 

from (4.25); the latter requires instead some work, which we simply sketch. 
Denote,  as in Proposi t ion 1, 

A~(p, q) = qbFT(p, q) -- ~ ( p ,  q) (4.29) 

Proceeding as there, we replace e by the complex variable -, and work out 
a local estimate of A~, for Izl up to some convenient (. To  this purpose, let 
us write 

~J~_=A'+A" 

~ ' =  ~ F  r. - -  ~ - -  L,..:r zF'= LF:~--(~:- -r  
(4.30) 
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We claim that, for Izl ~<~= (2fir)-t, the two terms are estimated by 

IId'; qll,/~6 <~ ~(~9(q), Ild"; qll;/2 < 9 (~ (q )  (4.31) 

The latter estimate is quite simple: indeed, recalling ~b~ =f~,  one has 
~ .  - ~ = zfj + z'-ql z, and thus 

IILF'~ -- ~g=; qllo/z <~ I l f g -  z f  l ; qll,/2 + Izl z 11r q11o/,- 
(4.32) ~< �89 + ~z o" aj(q) 

T 

Using then a/r-%< F =  �88 ~/~-%< ~ the estimate is immediate. Concerning A', 5, 
there is instead some work. Let (p, 4) be such that 

IIm/~l ~< t~cr, 14-  ql -..< ~ (4.33) 

and denote 

One has clearly 

and thus 

q5~(.6, 4) = (P(t,/~, 4), Q(t, 1~, 4)) 

A'(fi, q ) =  dt (P(t,  t 5, 4), Q(t, p, 4)) ds 

= fo dt (Lr~F~)(P( t, P, 4), Q(t, ~, 4)) ds 

IA'(~, 4)1 ~< �89 sup I (LF'F:)(P( t ,  ,6, 4), Q(t, ,6, 4))1 
O~<t~<l 

(4.34) 

IQ(t, fi, 4 ) - q l < ~ � 8 8  for 0~<t~<l 

One can see that, for/~, 4 as in (4.33}, such a condition is guaranteed by 

IIF~ll,/2 <~ 3~F <~ 3 (4.36) 

which in turn foilows from (4.26a). After some elementary work, based on 
the trivial decomposition F~ = - f ,  + (F~ - zft ), one finds 

I[L,-,F~; qll,/4 ~< 5 Izl 2 F~(q)  <~ ~ f l ~ ( q )  (4.37) 

provided 

IIm e(t ,  p, 4)1 ~< 7o', 

<~ �89 IILF~F~; qll,/4 (4.35) 
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and the estimate for A' is immediate. From (4.31) one has 
[[A~;qlqp/~6<~(ff(q), and (4.26b) follows. This concludes the proof of 
Proposition 1'. QED 

In the next corollary we adapt to the problem at hand the relevant 
results of Corollaries 1-3. 

CoroJ l a ry  4. Within the above assumptions and notations, if 
Iq[ (r --* 0 for [ql --' oo, then: 

(i) There exists a Hamiltonian K~, such that, denoting by r its 
time-e flow, one has 

l 
I1~  -- ~v ; qllt,/16 <<-ee-E~'/~'lq~(q), e* = - -  (4.38) 

2eft 

(ii) For any initial datum ( p , q ) e ~  ~kl, denoting by Q(k, p,q)  the 
q-component of ~U~(p, q), one has 

k 

[K~.(~k(p, q))--K,:(p, q))l <~ 4ne Fe-t~'/`l ~ ff(Q(J, p, q)) 
j = O  

(iii) 

(4.39) 

The vector fields X and X~ are related by 

[IXe --  "J(; q[lp/16 ~ 8e2Fff(q) (4.40) 

With appropriate choice of the additive constant in K, the (iv) 
Hamiltonians K~. and K turn out to coincide everywhere at infinity, 

lim IK~(p, q ) - K ( p ,  q)l = 0  (4.41) 
Iql ~ +c 

while for any (p, q ) e ~  one has 

]KAp, q ) -  K(p, q)[ ~< eel(q) (4.42) 

with 

~ ( q ) = 8 F a i n f f  ,if(q)[[dq[[ Iql- , 0  (4.43) 
/q IV oZ= 

lq denotes a path in D from q to infinity. 

(v) The algorithm ~v preserves K~+, uniformly in time, up to an 
exponentially small quantity, namely for any k > 0 one has 

]K~+(~(p, q ) ) -  K~(p, q))l ~ Cee-t~+'/~l 

C = 4n ~. ff(Q(j, p, q)) < oo 
(4.44) 

1 = 0  
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Concerning K, one has instead 

IK(pk, qk) -- K(po, qo)l ~< e[~(qk) + ~(qo)]  + ee- ["/~] (4.45) 

Remark .  The last statement (4.45) shows that the error in the 
energy conservation is bounded uniformly in time, and small with e; 
moreover, according to (4.43), asymptotically for  Iqol, [qkl ~ ~ ,  the overall 
error in energy conservation is exponentially small. 

ProoL The proof of (4.38) directly follows from (4.26b), by simply 
proceeding as in Corollary 1; in a similar way, following the last part of 
Corollary2, one gets (4.39). Concerning instead inequality (4.40), one 
proceeds as follows: from (4.25), one easily gets [besides the already used 
estimate (4.26a)] 

JlF~-~f~;qllp/2<~2~"fl~(q) for ~ ~< l/(4rfl) (4.46) 

Indeed, from (4.25) one can write 

IlF~ - efl ; qll,/z <<. �89 ~.. k(~pk) k - 2 
k = 2  

12 ~ 2*- 2 <~ ~ fl(#(q) ~ ' ( ~ , f l k )  k -  (4.47) 
k = 2  

and the estimate is immediate. Proceeding as in (4.17), inequality (4.40) 
directly follows. 

Concerning point (iv), let K~(0, ~) = K~(0, ~) for some arbitrarily fixed 
point ~ e D; for any (p, q ) �9  ~ one has then 

f(P'ql (VK~ -- VK)- dl (4.48) K~(p, q) - K(O, q) = ~l~.o~ 

Moving first p at fixed ,~ and then q, and proceeding as in Corollary 3, one 
then obtains 

IK~(p, q ) - K ( p ,  q)l <~8neFr IIP-P]I .~(@)+8~Faf f#(q)[Idq[I (4.49) 
I(~.q 

lq.q is any path from # to q in R'. Taking the reference point ~---, ~ ,  the 
first term of (4.49) vanishes, and one gets 

t 
IK~.(p, q) - K(p, q)l ~< 8eFa J C~(q) Ildqll (4.50) 

/q 
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Iq is any path  from q to the given "poin t"  at infinity. The limit (4.41) is then 
immediate ly  achieved, by simply taking a path  at infinity 4 [one  uses here 
the assumpt ion  ]ql ~ # ( q ) ~ 0  for Iq[---' ~ ] ;  moreover ,  this shows that  the 
par t icular  choice of Iq[ at infinity is irrelevant,  and (4.43) immedia te ly  
follows. Finally,  (4.44) and (4.45) trivially follow from (4.39), and this 
completes  the proof  of the corollary.  Q E D  

Figure 1 shows the asymptot ic  error  in the energy conservat ion,  as a 
function of the inverse t imestep ~-~ (in semilogar i thmic  scale), for a very 
simple scattering problem in two dimensions;  with obvious meaning of the 
symbols,  the Hami l ton ian  has the form 

p2.+ p~.+ V(x, y) 
K(p.,., py, x, y) = 2m 

(4.51) 
d - -  1.r + 3,2 )/d 2 

V(x, y)= Vo 
(1 + x2/r2)(1 + y2/'t'2) 

We used m, d, and V o, respectively, as units of mass, length, and energy; 
computa t ions  were performed in quadrup le  precision (approx imate ly  33 
decimal digits). The initial point  was taken at a distance r ~ 10d from the 
origin; at such a distance, within the compute r  precision, both the potent ial  
energy and the forces are negligible, i.e., the point  is pract ical ly at infinity. 
Each run is s topped when the final point  is again at a distance r from the 
origin. The quant i ty  plot ted in Fig. 1 is the relative error  &E= IAEI/Eo, 
where AE is the difference between the initial and final values of K, and Eo 
is the initial energy. The initial da t a  are (in the above units) x ~  - 1 0 ,  
y ~  p ,~  we set r = 0 . 5 .  As one can see, at least for small a, the 
asympto t ic  error  follows, with good accuracy,  an exponent ia l  law 
fE~e-~/% and even relatively large t imesteps lead to quite small  final 
errors. Let us stress that  only at the end of the collision is the error  6E so 
small: on the contrary ,  at the middle of the collision, the error  is simply of 
order  ~,5 and thus much larger, for several orders  of magni tude.  

4 It may appear that this argument fails for systems in which only one coordinate can go to 
infinity (for example, one-dimensional systems) if the asymptotic states lie at opposite sides 
of zero, and thus cannot be joined by a path at infinity. However, it is not difficult to add 
to the system a fictitious degree of freedom in such a way as to overcome'this topological 
difficulty. 

s In fact, according to the usual prescription of the leap-frog algorithm, before using p in the 
computation of energy, one introduces a correction (the so-called "half step" of the algo- 
rithm). This correction vanishes asymptotically where the forces vanish and the algorithm is 
exact, and is of order r during the collision; its effect is a reduction of &E from order a to 
order ~.-'. This fact. although significant in practical computations, is quite irrelevant in the 
present discussion. 
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Fig. 1. The asymptotic error in energy conservation, fiE, as function of the inverse timestep 
1/e., in semilogarithmic scale, for an elementary scattering problem (quadruple precision, 
approximately 33 significant digits). 

Essentially the same results are obtained in more complicated scatter- 
ing problems, in particular for systems like (4.5), where the scattering. 
object has an internal degree of freedom; in fact, according to the above 
theoretical analysis, one only needs that asymptotically, when the scatter- 
ing object moves freely, the algorithm is exact. Notice that, in the case of 
an internal vibrational degree of freedom, it is necessary to use for the 
oscillator the action-angle variables (as is not common in numerical studies). 

5. C O N C L U S I O N S  

In this paper we reconsidered the problem of the Hamiltonian inter- 
polation of symplectic mappings. More precisely, we introduced quan- 
titative estimates in Moser's formal scheme, and proved that, if a mapping 
7J~ is analytic and E-close to the identity, then there exists an analytic 
autonomous Hamiltonian system H~ such that its time-one flow q~,~ differs 
from 7t~ by a quantity exponentially small in 1/e. This result has been 
applied, in particular, to the problem of numerical integration of 
Hamiltonian systems by symplectic algorithms; the conclusion is that, 
when using an analytic algorithm of order s to integrate a Hamiltonian 
system K, o n e  actually follows "exactly," namely within the computer 
roundoff error, the trajectories of the interpolating Hamiltonian H~,, or 
equivalently of the order-one Hamiltonian K~=~-~H~, which differs 
from K, but turns out to be e' close to it. 

822,/74/'5-6-13 
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Now, a typical motivation for numerical studies on Hamiltonian 
systems concerns the presence and the behavior of the integrals of motion: 
in the simplest case, one deals with a nearly integrable Hamiltonian system 
of the form 

K,(L~o)=Ko(I)+ctf(L~o), Ie•", ~o e T" 

(ct is here a small parameter), and questions, for example, the number of 
actions which are practically conserved, or the time scale on which they are 
allowed to change significantly. For such a problem, one clearly expects 
that the use of a numerical algorithm does modify the system, but in an 
inessential way: indeed, the original Hamiltonian K, is simply replaced by 

K,.~(L ~o)=Ko(I)+~f(L r + ~"g(L q~) 

with g bounded and essentially as regular as f. Unless f is chosen in a class 
with very special properties, for small e one expects, on the basis of the 
typical results of perturbation theory, that the two Hamiltonians behave 
practically in the same way: so, studying K~ or K~.~ makes no essential 
difference. This is an example of a situation of structural stability to which 
remark (ii) in the Introduction applies. Let us stress that here both the 
symplectic character of the integration scheme and the globality of the 
interpolating Hamiltonian are essential: otherwise we could not interpret 
the effect of the algorithm simply as a small additional perturbation in the 
Hamiltonian, and the results, namely the long-time behavior of the 
approximate integrals of motion, could drastically change. 

Another point that we consider to be relevant for the numerical 
integration of Hamiltonian systems is the problem of energy conservation 
in "asymptotically free" systems, say in numerical studies of scattering 
processes. As we have seen, in this case K and K~. asymptotically coincide, 
and the final error in energy conservation turns out to be totally negligible. 
As a matter of fact, this allows one to measure relevant quantities, like 
the energy exchanges among different degrees of freedom at the end of a 
scattering process, with very high accuracy: this is important, because these 
quantities are known to be, in some cases, so small that they risk getting 
completely lost by numerical errors; actually, they typically decrease 
exponentially with the frequency of the vibrational or rotational degrees 
of freedom involved in the process (see, for example, refs. 4 and 11-14). In 
simple examples, as shown in refs. 10 and 15, one can appreciate quite 
small energy exchanges--even smaller than one part o v e r  10 3~ in ref. 1 5 -  
and confidently follow the exponential laws governing the energy exchanges 
over many decades. 

A final question one could be interested in is whether our results have 
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some consequences for the reliability of numerical integration schemes in 
the general non-Hamiltonian case. In fact, we made use of the Hamiltonian 
structure only in the applications, while the basic results, namely the 
existence of an interpolating flow close to the one to be studied, is clearly 
independent of it. In particular, remark (ii) in the Introduction applies 
to this case, too. Nevertheless it is not clear to us whether this is relevant 
for the accuracy of numerical integrators. In fact, we could not produce 
significant examples of non-Hamiltonian flows which are interesting for 
numerical study and at the same time exhibit some kind of structural 
stability which can be used to guarantee the reliability of results. 
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